网信彩票-网信彩票
网信彩票2023-01-31 16:05

团结——从党的二十大看中国共产党的成功密码之九******

  新华社北京12月28日电题:团结——从党的二十大看中国共产党的成功密码之九

  新华社记者

  “团结就是力量,团结才能胜利”“确保党的团结统一”“为全面建设社会主义现代化国家、全面推进中华民族伟大复兴而团结奋斗”……纵览党的二十大报告,“团结”一词贯穿全篇,先后出现20余次。

  正如一首经典歌曲所唱,“团结就是力量,这力量是铁,这力量是钢,比铁还硬,比钢还强”。团结奋斗是中国共产党和中国人民的显著精神标识,也是中国共产党百年来领导人民赢得一个又一个伟大胜利的关键密码。

  “团结奋斗是中国人民创造历史伟业的必由之路”

  10月27日,党的二十大闭幕不到一周,习近平总书记带领新一届中共中央政治局常委同志来到延安杨家岭,走进古柏苍松环抱的中央大礼堂,瞻仰中共七大会址。

  礼堂后墙上,毛泽东同志亲笔为七大题写的主题词——“同心同德”四个大字,历经岁月的洗礼,愈发鲜亮。

  “党的七大在党的历史上具有重要里程碑意义,标志着我们党在政治上思想上组织上走向了成熟。在政治上,党通过延安整风,使全党团结在毛泽东的旗帜下,实现了党的空前统一和团结。”回望历史,习近平总书记深刻揭示了党的团结统一这一关键的成功密码。

  积力所举无不胜,众智所为无不成。

  从土地革命战争时期的“唤起工农千百万,同心干”,到抗日民族统一战线旗帜下“四万万人齐蹈厉,同心同德一戎衣”;从号召“团结一致向前看”,为建成现代化的社会主义强国而奋勇前进,到全党上下总动员,数百万党员干部奔赴脱贫攻坚主战场……

  作为继承和发扬了中华民族团结奋斗优良传统的马克思主义政党,一代代共产党人以强大的向心力,铸就古今中外最讲团结、最能奋斗的最先进政治力量。

  进入新时代,习近平总书记反复强调团结的重要性——

  在纪念红军长征胜利80周年大会上指出,没有这种思想上政治上的大团结,中国革命胜利是不可能实现的;

  在庆祝中华人民共和国成立70周年招待会上阐述,团结是中国人民和中华民族战胜前进道路上一切风险挑战、不断从胜利走向新的胜利的重要保证;

  在庆祝中国共产党成立100周年大会上强调,团结一切可以团结的力量、调动一切可以调动的积极因素,最大限度凝聚起共同奋斗的力量……

  人心是最大的政治,团结是最强的力量。

  十年来,我们紧密团结在以习近平同志为核心的党中央周围,稳经济、促发展,战贫困、建小康,控疫情、抗大灾,应变局、化危机,攻克了一个个看似不可攻克的难关险阻,创造了一个个令人刮目相看的人间奇迹。

  穿越历史的烟云,一个真理昭示未来:团结奋斗是中国人民创造历史伟业的必由之路!

  “能团结奋斗的民族才有前途,能团结奋斗的政党才能立于不败之地”

  翻开党的二十大报告,大会的主题开宗明义:“为全面建设社会主义现代化国家、全面推进中华民族伟大复兴而团结奋斗”。

  “团结奋斗”四字,蕴含着深刻丰富的内涵。

  党的百年历史,是一部党领导人民团结奋斗、赢得伟大胜利的历史。

  牢不可破的团结,源自中国共产党人远大的志向和抱负——

  党的二十大闭幕后不久,上海市兴业路76号中共一大会址前,鲜艳的党旗一次次在人群中展开。会址旁的报告厅内,一堂堂生动的二十大精神专题党课接连举行……

  百年前那栋不起眼的石库门小楼,在新时代焕发出新的光彩。

  习近平总书记多次引用“革命理想高于天”说明理想信念的重要性。理想信念,赋予了中国共产党人信仰之美、理想之光、真理之力。

  能团结奋斗的民族才有前途,能团结奋斗的政党才能立于不败之地。中国共产党人把实现共产主义作为最高理想,把为中国人民谋幸福、为中华民族谋复兴作为初心使命,这种远大志向和抱负,赋予共产党人团结一心、顽强奋斗的强大动力。

  牢不可破的团结,源自中国共产党人无私的精神和品格——

  毛泽东同志曾经指出:“共产党是为民族、为人民谋利益的政党,它本身决无私利可图。”

  在庆祝中国共产党成立100周年大会上,习近平总书记再次生动诠释了中国共产党这种精神特质:

  “中国共产党始终代表最广大人民根本利益,与人民休戚与共、生死相依,没有任何自己特殊的利益,从来不代表任何利益集团、任何权势团体、任何特权阶层的利益。”

  正是这种无私精神和品格,使我们党始终保持同人民群众的血肉联系,始终得到人民群众的衷心拥护和坚定支持。

  牢不可破的团结,源自中国共产党人对辩证唯物主义的坚持和贯彻——

  团结与斗争,是矛盾运动的统一体。中国共产党追求的团结,是有原则的团结,不是一团和气,更不是团团伙伙。

  摒弃一切畏首畏尾、一切消极懈怠、一切瞻前顾后,始终保持狭路相逢勇者胜、越是艰险越向前的大无畏气概,新时代的共产党人,坚持真理、修正错误,勇于同各种错误言行作斗争,并在这种斗争中更加团结。

  “心往一处想、劲往一处使,推动中华民族伟大复兴号巨轮乘风破浪、扬帆远航”

  “全党全国各族人民要在党的旗帜下团结成‘一块坚硬的钢铁’,心往一处想、劲往一处使,推动中华民族伟大复兴号巨轮乘风破浪、扬帆远航。”

  在参加党的二十大广西代表团讨论时,习近平总书记以钢铁为喻,形象地指明了团结之于民族复兴的重要意义。

  今天,我们比历史上任何时期都更接近、更有信心和能力实现中华民族伟大复兴的目标。越是接近目标,越需要巩固和加强各方面团结,用团结一心、众志成城筑起防范化解各种风险挑战的铜墙铁壁。

  宏伟的目标任务,要求更坚强的团结——

  10月25日,党的二十大闭幕后的首次中央政治局会议,审议通过《中共中央政治局关于加强和维护党中央集中统一领导的若干规定》,进一步释放出新征程上巩固和加强党的团结统一的重要信号。

  百年党史经验反复证明,只要全党步调一致、团结统一,我们就能无坚不摧,战胜一切艰难险阻和强大敌人;反之,党和国家事业就会遭受挫折。

  以中国式现代化全面推进中华民族伟大复兴,使命光荣,任务艰巨。只有在党的领导下,把14亿多中国人民的积极性、主动性、创造性充分激发出来、凝聚起来,形成全党全社会心往一处想、劲往一处使的生动局面,宏伟蓝图才能最终变成美好现实。

  复杂的内外环境,呼唤更广泛的团结——

  不久前,习近平总书记赴沙特利雅得出席首届中国-阿拉伯国家峰会、首届中国-海湾阿拉伯国家合作委员会峰会并对沙特进行国事访问,共叙友谊、共话互信、共商合作、共论天下。

  从撒马尔罕上合组织成员国元首理事会会议,到巴厘岛、曼谷二十国集团领导人峰会和亚太经合组织领导人非正式会议,再到利雅得中阿峰会、中海峰会……

  党的二十大前后三次出访期间,习近平总书记累计同40多个国家领导人双边会见。透过繁忙的元首外交,中国的朋友圈越来越广,新朋友越来越多,老朋友越来越铁。

  当前,世界百年变局叠加世纪疫情,我们面临的内外环境更趋严峻复杂。团结的面越宽,团结的人越多,我们的事业就越兴旺发达。

  团结一切可以团结的力量,调动一切可以调动的积极因素。在以习近平同志为核心的党中央坚强领导下,全党全国各族人民必将以更加紧密的团结、更加顽强的奋斗,把民族复兴伟业不断推向前进!(记者林晖、王琦、范思翔、董博婷)

  海报设计:赵丹阳

  技术:密雅琪、相昌盛

  编辑:胡碧霞

网信彩票

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

中国网客户端

国家重点新闻网站,9语种权威发布

网信彩票地图